Weak colored local rules for planar tilings

نویسندگان

  • Thomas Fernique
  • Mathieu Sablik
چکیده

A linear subspace E of R has colored local rules if there exists a finite set of decorated tiles whose tilings are digitizations of E. The local rules are weak if the digitizations can slightly wander around E. We prove that a linear subspace has weak colored local rules if and only if it is computable. This goes beyond the previous results, all based on algebraic subspaces. We prove an analogous characterization for sets of linear subspaces, including the set of all the linear subspaces of R.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

No Weak Local Rules for the 4p-Fold Tilings

On the one hand, Socolar showed in 1990 that the n-fold planar tilings admit weak local rules when n is not divisible by 4 (the n = 10 case corresponds to the Penrose tilings and is known since 1974). On the other hand, Burkov showed in 1988 that the 8-fold tilings do not admit weak local rules, and Le showed the same for the 12-fold tilings (unpublished). We here show that this is actually the...

متن کامل

Local Rules for Quasicrystals

The relationship of local ordering and long-range order is studied for quasicrystalline tilings of plane and space. Two versions of the concept of local rules are introduced: strong and weak. Necessary conditions of the existence of strong local rules are found. They are mainly reduced to the constraints for irrational numbers related to incommensurabilities of the quasicrystals. For planar qua...

متن کامل

Hexagonal Inflation Tilings and Planar Monotiles

Aperiodic tilings with a small number of prototiles are of particular interest, both theoretically and for applications in crystallography. In this direction, many people have tried to construct aperiodic tilings that are built from a single prototile with nearest neighbour matching rules, which is then called a monotile. One strand of the search for a planar monotile has focussed on hexagonal ...

متن کامل

When periodicities enforce aperiodicity

Non-periodic tilings and local rules are commonly used to model the long range aperiodic order of quasicrystals and the finite-range energetic interactions that stabilize them. This paper focuses on planar rhombus tilings, that are tilings of the Euclidean plane which can be seen as an approximation of a real plane embedded in a higher dimensional space. Our main result is a characterization of...

متن کامل

Local Rules for Computable Planar Tilings

Aperiodic tilings are non-periodic tilings characterized by local constraints. They play a key role in the proof of the undecidability of the domino problem (1964) and naturally model quasicrystals (discovered in 1982). A central question is to characterize, among a class of non-periodic tilings, the aperiodic ones. In this paper, we answer this question for the well-studied class of non-period...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1603.09485  شماره 

صفحات  -

تاریخ انتشار 2016